

Comparative Two Stage Biorelevant Dissolution Guide

CTSD-Beta V4.3 Page | 1 of 25

This guide uses the Two Stage Biorelevant Dissolution Kit

- ✓ Simulate how a drug product behaves when it contacts the stomach fluid (FaSSGF) and then when the fluid is converted into intestinal fluid (FaSSIF)
- ✓ Particularly important for comparing different formulations of basic drugs with a higher solubility at acidic stomach pH compared to higher intestinal pH
- ✓ Results will reveal the drug's tendency to either supersaturate or precipitate in gastrointestinal fluids
- ✓ Results can help formulation development and optimisation

The **Two Stage Biorelevant Dissolution Kit** (Product Code: 2ST-KIT) contains everything you need to run this experiment and it is available to buy here: https://biorelevant.com/Two-Stage-Biorelevant-Dissolution/buy/

TIP

Before carrying out two stage dissolution, it is strongly suggested to carry out dissolution of Reference and Test formulations in FaSSIF (900mL per vessel). For_comparative biorelevant dissolution follow this link https://biorelevant.com/#dissolution_wizard_tab

Experiment: Comparative two stage biorelevant dissolution

Dosage form: Immediate release (IR) tablet or capsule

Equipment: USP apparatus 2, HPLC

Objective

a. Evaluate HPLC method

b. Carry out two stage biorelevant dissolution

 Compare Test Formulation dissolution profile with Reference

SECTION A: Evaluate HPLC Method

A1) FaSSIF preparation

✓ Prepare FaSSIF medium with 3F Powder® and the diluted FaSSIF Buffer Concentrate for HPLC testing using our online Media Prep Tool. Typically, about 300mL of "FaSSIF" are required

A2) Mobile phase

A monograph or QC HPLC method can normally be used as a starting point for analysis. Methanol is the preferred organic solvent for mobile phase in combination with appropriate buffer

A3) Stationary phase

- ① Check column suitability for drug analysis
- 1 Monograph or QC methods with C18 columns (5 μ m and 3 μ m) can typically be used

A4) Calculate the Maximum theoretical drug concentration

Theoretical max drug conc. = $\frac{\text{Dose of drug substance in formulation}}{\text{Volume in the dissolution vessel }*}$

* recommended volume is 900 mL for FaSSIF

These values will help you establish the amount of drug required to prepare Primary standard solution.

A5) Primary standard solution (PSS)

① Organic Solvent (e.g. methanol and/or DMSO) of monograph or QC methods can typically be used to dissolve drug substance to prepare PSS

A6) Diluent for standards and dissolution samples

- The diluent of monograph or QC methods can be used if compatible with FaSSIF
- (i) Acetonitrile is **NOT** recommended
- ① Methanol with water (buffered or unbuffered) mixtures can generally be used for dilution of PSS to prepare secondary standard solution (SSS) and dilution of dissolution samples

① Dilute the FaSSIF with diluent, checking different dilution ratios and observe homogeneity and physical stability

i Diluted samples should look homogenous

- ① Keep the matrix similar;
 - Use diluent (optionally), FaSSIF and SSS to prepare working standard solution (WSS)
 - Dilute filtered dissolution samples with diluent

A7) Check interference and stability of fresh samples

- ✓ Prepare diluted samples of:
 - FaSSIF
 - drug without FaSSIF
 - drug with FaSSIF (e.g. WSS)
 - dosage form (e.g. drug and excipients) with FaSSIF

✓ Check freshly diluted samples have no precipitate

- ✓ Inject samples to check interference and chemical stability
- ✓ Store samples for stability (typically 24hours)

- ✓ Do not inject
- ✓ Adjust diluent and/or ratio to keep samples homogenous

✓ Check non-drug peaks do not interfere

✓ Determine drug peak area and check quality of chromatograms

A8) Stability of stored samples

- ✓ Re-inspect stored diluted samples which were previously prepared in Section A7:
 - FaSSIF
 - drug without FaSSIF
 - drug with FaSSIF (e.g. WSS)
 - dosage form (e.g. drug and excipients) with FaSSIF

✓ Re-check stored diluted samples have no precipitate

 Re-inject stored samples to check chemical stability

- ✓ Do not re-inject
- ✓ Re-adjust diluent and/or ratio to keep stored samples homogenous

① Chromatogram drug peaks of fresh and stored samples should look

① Establish linearity for range of analysis

① Establish limit of (drug) quantification

A9) Specificity and precision

- ✓ Carry out multiple injections of diluted sample containing dosage form with dissolution medium
- ✓ Check system and chromatographic properties do not substantially change

- ① If system properties change, consider washing cycles and/or a guard column
- (i) If chromatographic properties change, consider adjusting method (for example flow rate, temperature, injection volume, solvent ratios)
- i) If further adaptions are still required, consider modifications (for example changing mobile phase, try a gradient or different solid phase)

A10) Filter adsorption

- ① Our 13mm diameter, 0.45μm GMF, inside a 25 mm casing with Luer lock filters are typically recommended for manual sampling. These filters do not leach into biorelevant media. 70 filters are included with the two stage biorelevant dissolution kit
- (i) A fresh filter should be used for each sampling time point

- ✓ Check filter does not adsorb drug at a low concentration, for example 10% to 20% of drug release
- ✓ If filter adsorbs, determine volume needed to pre-saturate

SECTION B: DISSOLUTION

B1) Media Preparation for two stage biorelevant dissolution

- 450mL of FaSSGF and 450mL of Concentrated FaSSIF are required for each vessel
- ① The preparation methods for n = 6 vessels are provided below:

B1a) FaSSGF Preparation (2.8L includes 100mL overage):

1) MAKE BUFFER

2) ADD POWDER

- -103.0g of FaSSGF Buffer Concentrate-2693g of purified water
- 2000g or parmed mate

-Add 0.167g of 3F Powder to the buffer

3) STIR

⁻Stir until dissolved

⁻Use medium within 48 hours

B1b) Concentrated FaSSIF (2.8L includes 100 mL overage 100 mL overage):

Important: For optimal reproducibility prepare this Concentrated FaSSIF just before starting the dissolution and use within 3 hours of preparation.

1) Make Two Stage FaSSIF Buffer

- 285.7g of Two Stage Buffer Concentrate
- 2506.8g of purified water

3) Add Powder

- Add 12.38g 3F Powder® to the Pre-heated Buffer
- Stir until dissolved

2) Pre- Heat 37°C

4) Weigh Concentrated FaSSIF

Weigh 452.3g (450 mL) of "Concentrated FaSSIF" into a container for each dissolution vessel

5) Maintain at 37°C

B2) Dissolution Parameters

in general, biorelevant dissolution should be performed with the following parameters

USP apparatus 2

Temperature

Sinker*

*if capsule floats

Media volume

Manual sampling

Test n≥3 vs Ref n≥3

B2b) After addition of Concentrated FaSSIF

USP apparatus 2

Manual sampling

Temperature

(after addition)

Test n≥3 vs Ref n≥3

Media Volume

B3) Dissolution Sampling

① Perform sampling at:

Medium	Sampling time points minutes
FaSSGF	5, 10, 20, 30, 45, 60
After addition of Concentrated FaSSIF	65, 75, 90, 120, 180

- (1) Carefully observe and note the disintegration behaviour of the immediate release dosage form for the first 2 to 3 minutes
- ① After addition of Concentrated FaSSIF to FaSSGF, carefully observe the behaviour of drug within the vessels for least 5 minutes and note if there is a change in appearance

B4) FaSSGF dissolution set up

✓ Fill each vessel with 450mL of FaSSGF

✓ Warm to 37°C

B5) Start FaSSGF dissolution

✓ Add formulation

✓ Start rotating spindles and timer

B6) FaSSGF sampling

Withdraw sample

Attach fresh filter

Pre-saturate filter (see Section A10) and RETURN filtrate back to

vessel

Discard filter, re-attach syringe to cannula

Dilute filtrate immediately (see Section A6)

Repeat sampling at remaining time points until end of FaSSGF dissolution (60 minutes)

B7) Add Concentrated FaSSIF to FaSSGF

✓ At the end of FaSSGF dissolution, pour 450mL of pre-heated Concentrated FaSSIF (from B1b) directly into each vessel over 15 seconds

B8) Sampling after addition of Concentrated FaSSIF

✓ Discard the syringe used for FaSSGF Sampling and replace with a new FRESH Syringe at the start of the FaSSIF Sampling

√ 5 minutes after the addition start sampling

✓ Attach fresh filter

✓ Pre-saturate filter (see Section A10) and return filtrate back to vessel

✓ Filter and collect remaining dissolution sample (about 1mL) for analysis

✓ Discard filter, re-attach syringe to cannula

✓ Dilute filtrate immediately (see Section A6)

✓ Repeat sampling at remaining time points (typically 3hours after start) of experiment)

B9) Generate comparative dissolution profiles

- ✓ Analyse samples by HPLC
- ✓ Check the quality of chromatograms
- ✓ Generate dissolution profiles of Test and Reference Drug Products

The goals are:

- ① Understand dissolution behaviour after conversion of the stomach to intestinal fluid
- (1) If profile of Test Formulation does not match the Reference, modify Test Formulation so that the dissolution profile matches Reference **Product**

- For troubleshooting, contact our Help Desk
- Read our Learning Centre posts for more detailed information